Statistically-informed deep learning for gravitational wave parameter estimation

نویسندگان

چکیده

Abstract We introduce deep learning models to estimate the masses of binary components black hole mergers, (m1,m2) , and three astrophysical properties post-merger compact remnant, namely, final spin, $a_\mathrm f$?> overflow="scroll">af frequency damping time ringdown oscillations fundamental $\ell = m 2$?> overflow="scroll">?=m=2 bar mode, $(\omega_\mathrm R, \omega_\mathrm I)$?> stretchy="false">(?R,?I(m1,m2,af,?<mml:mi five holes: GW150914 GW170104 GW170814 GW190521 GW190630 use PyCBC Inference directly compare traditional Bayesian methodologies for parameter estimation based distributions. results show network predict distributions encode physical correlations, data-driven median 90% confidence intervals are similar those produced gravitational wave analyses. This methodology requires single V100 NVIDIA GPU values within two milliseconds each event. network, tutorial its use, available at Data Learning Hub Science

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data

The recent Nobel-prize-winning detections of gravitational waves from merging black holes and the subsequent detection of the collision of two neutron stars in coincidence with electromagnetic observations have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this emergent field of science, we pioneered the use of deep learning with convolutional neural networks, th...

متن کامل

Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with LIGO Data

The recent Nobel-prize-winning detections of gravitational waves from merging black holes and the subsequent detection of the collision of two neutron stars in coincidence with electromagnetic observations have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this emergent science, the use of deep convolutional neural networks were proposed for the detection and cha...

متن کامل

Gravitational wave parameter estimation with compressed likelihood evaluations

Priscilla Canizares, Scott E. Field, Jonathan R. Gair, and Manuel Tiglio 4 Institute of Astronomy, Madingley Road, Cambridge, CB30HA, United Kingdom Department of Physics, Joint Space Sciences Institute, Maryland Center for Fundamental Physics. University of Maryland, College Park, MD 20742, USA Center for Scientific Computation and Mathematical Modeling, Department of Physics, Joint Space Scie...

متن کامل

Accelerated gravitational wave parameter estimation with reduced order modeling.

Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current approaches to parameter estimation for these detectors require computationally expensive algorithms. Therefore, there is a pressing need for new, fast, and accurate ...

متن کامل

Bayesian Bounds on Parameter Estimation Accuracy for Compact Coalescing Binary Gravitational Wave Signals

A global network of very sensitive large-scale laser interferometric gravitational wave detectors is projected to be in operation by around the turn of the century. The network is anticipated to bring a range of new astrophysical information — relating to neutron stars, black holes, and the very early universe — and also new fundamental physics information, relating to the nature of gravity in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine learning: science and technology

سال: 2021

ISSN: ['2632-2153']

DOI: https://doi.org/10.1088/2632-2153/ac3843